Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Article in English | MEDLINE | ID: mdl-38655025

ABSTRACT

We conducted a retrospective study to assess performance of provider-selected antibiotic indication (PSI) in identifying hospitalized adults with community-acquired pneumonia. PSI showed moderate sensitivity (64.4%) and high specificity (96.3%). PSI has potential utility for targeted real-time antibiotic stewardship interventions, though future research should investigate methods to improve sensitivity.

2.
bioRxiv ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38260322

ABSTRACT

Fascin crosslinks actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-electron microscopy, cryo-electron tomography coupled with custom denoising, and computational modeling to probe fascin's F-actin crosslinking mechanisms across spatial scales. Our fascin crossbridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis, and simulations show how structural plasticity enables fascin to bridge varied inter-filament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncovers geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable crosslinks that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.

3.
Clin Infect Dis ; 78(5): 1120-1127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38271275

ABSTRACT

BACKGROUND: A study previously conducted in primary care practices found that implementation of an educational session and peer comparison feedback was associated with reduced antibiotic prescribing for respiratory tract diagnoses (RTDs). Here, we assess the long-term effects of this intervention on antibiotic prescribing following cessation of feedback. METHODS: RTD encounters were grouped into tiers based on antibiotic prescribing appropriateness: tier 1, almost always indicated; tier 2, possibly indicated; and tier 3, rarely indicated. A χ2 test was used to compare prescribing between 3 time periods: pre-intervention, intervention, and post-intervention (14 months following cessation of feedback). A mixed-effects multivariable logistic regression analysis was performed to assess the association between period and prescribing. RESULTS: We analyzed 260 900 RTD encounters from 29 practices. Antibiotic prescribing was more frequent in the post-intervention period than in the intervention period (28.9% vs 23.0%, P < .001) but remained lower than the 35.2% pre-intervention rate (P < .001). In multivariable analysis, the odds of prescribing were higher in the post-intervention period than the intervention period for tier 2 (odds ratio [OR], 1.19; 95% confidence interval [CI]: 1.10-1.30; P < .05) and tier 3 (OR, 1.20; 95% CI: 1.12-1.30) indications but was lower compared to the pre-intervention period for each tier (OR, 0.66; 95% CI: 0.59-0.73 tier 2; OR, 0.68; 95% CI: 0.61-0.75 tier 3). CONCLUSIONS: The intervention effects appeared to last beyond the intervention period. However, without ongoing provider feedback, there was a trend toward increased prescribing. Future studies are needed to determine optimal strategies to sustain intervention effects.


Subject(s)
Anti-Bacterial Agents , Practice Patterns, Physicians' , Primary Health Care , Respiratory Tract Infections , Humans , Anti-Bacterial Agents/therapeutic use , Practice Patterns, Physicians'/statistics & numerical data , Male , Female , Respiratory Tract Infections/drug therapy , Middle Aged , Adult , Feedback , Aged , Antimicrobial Stewardship/methods , Inappropriate Prescribing/prevention & control , Inappropriate Prescribing/statistics & numerical data
4.
J Am Med Inform Assoc ; 31(4): 809-819, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38065694

ABSTRACT

OBJECTIVES: COVID-19, since its emergence in December 2019, has globally impacted research. Over 360 000 COVID-19-related manuscripts have been published on PubMed and preprint servers like medRxiv and bioRxiv, with preprints comprising about 15% of all manuscripts. Yet, the role and impact of preprints on COVID-19 research and evidence synthesis remain uncertain. MATERIALS AND METHODS: We propose a novel data-driven method for assigning weights to individual preprints in systematic reviews and meta-analyses. This weight termed the "confidence score" is obtained using the survival cure model, also known as the survival mixture model, which takes into account the time elapsed between posting and publication of a preprint, as well as metadata such as the number of first 2-week citations, sample size, and study type. RESULTS: Using 146 preprints on COVID-19 therapeutics posted from the beginning of the pandemic through April 30, 2021, we validated the confidence scores, showing an area under the curve of 0.95 (95% CI, 0.92-0.98). Through a use case on the effectiveness of hydroxychloroquine, we demonstrated how these scores can be incorporated practically into meta-analyses to properly weigh preprints. DISCUSSION: It is important to note that our method does not aim to replace existing measures of study quality but rather serves as a supplementary measure that overcomes some limitations of current approaches. CONCLUSION: Our proposed confidence score has the potential to improve systematic reviews of evidence related to COVID-19 and other clinical conditions by providing a data-driven approach to including unpublished manuscripts.


Subject(s)
COVID-19 , Humans , Systematic Reviews as Topic , Research Design , PubMed , Pandemics
5.
Lancet Microbe ; 5(2): e194-e202, 2024 02.
Article in English | MEDLINE | ID: mdl-38101440

ABSTRACT

Laboratory-acquired infections (LAIs) and accidental pathogen escape from laboratory settings (APELS) are major concerns for the community. A risk-based approach for pathogen research management within a standard biosafety management framework is recommended but is challenging due to reasons such as inconsistency in risk tolerance and perception. Here, we performed a scoping review using publicly available, peer-reviewed journal and media reports of LAIs and instances of APELS between 2000 and 2021. We identified LAIs in 309 individuals in 94 reports for 51 pathogens. Eight fatalities (2·6% of all LAIs) were caused by infection with Neisseria meningitidis (n=3, 37·5%), Yersinia pestis (n=2, 25%), Salmonella enterica serotype Typhimurium (S Typhimurium; n=1, 12·5%), or Ebola virus (n=1, 12·5%) or were due to bovine spongiform encephalopathy (n=1, 12·5%). The top five LAI pathogens were S Typhimurium (n=154, 49·8%), Salmonella enteritidis (n=21, 6·8%), vaccinia virus (n=13, 4·2%), Brucella spp (n=12, 3·9%), and Brucella melitensis (n=11, 3·6%). 16 APELS were reported, including those for Bacillus anthracis, SARS-CoV, and poliovirus (n=3 each, 18·8%); Brucella spp and foot and mouth disease virus (n=2 each, 12·5%); and variola virus, Burkholderia pseudomallei, and influenza virus H5N1 (n=1 each, 6·3%). Continual improvement in LAI and APELS management via their root cause analysis and thorough investigation of such incidents is essential to prevent future occurrences. The results are biased due to the reliance on publicly available information, which emphasises the need for formalised global LAIs and APELS reporting to better understand the frequency of and circumstances surrounding these incidents.


Subject(s)
Influenza A Virus, H5N1 Subtype , Laboratory Infection , Yersinia pestis , Animals , Cattle , Humans , Salmonella enteritidis , Salmonella typhimurium
6.
Appl Biosaf ; 28(4): 199-215, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38090355

ABSTRACT

Introduction: Foot and mouth disease (FMD) is a highly contagious infection of cloven-hoofed animals. The Biosafety Research Road Map reviewed scientific literature regarding the foot and mouth disease virus (FMDV). This project aims to identify gaps in the data required to conduct evidence-based biorisk assessments, as described by Blacksell et al., and strengthen control measures appropriate for local and national laboratories. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections: the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: The available data regarding biosafety knowledge gaps and existing evidence have been collated. Some gaps include the need for more scientific data that identify the specific safety contribution of engineering controls, support requirements for showering out after in vitro laboratory work, and whether a 3- to 5-day quarantine period should be applied to individuals conducting in vitro versus in vivo work. Addressing these gaps will contribute to the remediation and improvement of biosafety and biosecurity systems when working with FMDV.

7.
Appl Biosaf ; 28(4): 216-229, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38090357

ABSTRACT

Introduction: Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods: The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion: Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.

8.
Phys Rev Lett ; 131(16): 161906, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925695

ABSTRACT

The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data from high-energy colliders. We present the first formulation of parton showers with accuracy 1 order beyond state-of-the-art next-to-leading logarithms, for classes of observables that are dominantly sensitive to low-energy (soft) emissions, specifically nonglobal observables and subjet multiplicities. This represents a major step toward general next-to-next-to-leading logarithmic accuracy for parton showers.

9.
Open Forum Infect Dis ; 10(8): ofad428, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37663091

ABSTRACT

The Penn Medicine COVID-19 Therapeutics Committee-an interspecialty, clinician-pharmacist, and specialist-front line primary care collaboration-has served as a forum for rapid evidence review and the production of dynamic practice recommendations during the 3-year coronavirus disease 2019 public health emergency. We describe the process by which the committee went about its work and how it navigated specific challenging scenarios. Our target audiences are clinicians, hospital leaders, public health officials, and researchers invested in preparedness for inevitable future threats. Our objectives are to discuss the logistics and challenges of forming an effective committee, undertaking a rapid evidence review process, aligning evidence-based guidelines with operational realities, and iteratively revising recommendations in response to changing pandemic data. We specifically discuss the arc of evidence for corticosteroids; the noble beginnings and dangerous misinformation end of hydroxychloroquine and ivermectin; monoclonal antibodies and emerging viral variants; and patient screening and safety processes for tocilizumab, baricitinib, and nirmatrelvir-ritonavir.

10.
Appl Biosaf ; 28(3): 135-151, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37736423

ABSTRACT

Introduction: The Biosafety Research Road Map reviewed the scientific literature on a viral respiratory pathogen, avian influenza virus, and a bacterial respiratory pathogen, Mycobacterium tuberculosis. This project aims at identifying gaps in the data required to conduct evidence-based biorisk assessments, as described in Blacksell et al. One significant gap is the need for definitive data on M. tuberculosis sample aerosolization to guide the selection of engineering controls for diagnostic procedures. Methods: The literature search focused on five areas: routes of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination methods. Results: The available data regarding biosafety knowledge gaps and existing evidence have been collated and presented in Tables 1 and 2. The guidance sources on the appropriate use of biosafety cabinets for specific procedures with M. tuberculosis require clarification. Detecting vulnerabilities in the biorisk assessment for respiratory pathogens is essential to improve and develop laboratory biosafety in local and national systems.

11.
Appl Biosaf ; 28(3): 152-161, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37736424

ABSTRACT

Introduction: The virus formerly known as monkeypox virus, now called mpoxv, belongs to the Orthopoxvirus genus and can cause mpox disease through both animal-to-human and human-to-human transmission. The unexpected spread of mpoxv among humans has prompted the World Health Organization (WHO) to declare a Public Health Emergency of International Concern (PHEIC). Methods: We conducted a literature search to identify the gaps in biosafety, focusing on five main areas: how the infection enters the body and spreads, how much of the virus is needed to cause infection, infections acquired in the lab, accidental release of the virus, and strategies for disinfecting and decontaminating the area. Discussion: The recent PHEIC has shown that there are gaps in our knowledge of biosafety when it comes to mpoxv. We need to better understand where this virus might be found, how much of it can spread from person-to-person, what are the effective control measures, and how to safely clean up contaminated areas. By gathering more biosafety evidence, we can make better decisions to protect people from this zoonotic agent, which has recently become more common in the human population.

12.
Article in English | MEDLINE | ID: mdl-37771744

ABSTRACT

Objective: To determine antibiotic prescribing appropriateness for respiratory tract diagnoses (RTD) by season. Design: Retrospective cohort study. Setting: Primary care practices in a university health system. Patients: Patients who were seen at an office visit with diagnostic code for RTD. Methods: Office visits for the entire cohort were categorized based on ICD-10 codes by the likelihood that an antibiotic was indicated (tier 1: always indicated; tier 2: sometimes indicated; tier 3: rarely indicated). Medical records were reviewed for 1,200 randomly selected office visits to determine appropriateness. Based on this reference standard, metrics and prescriber characteristics associated with inappropriate antibiotic prescribing were determined. Characteristics of antibiotic prescribing were compared between winter and summer months. Results: A significantly greater proportion of RTD visits had an antibiotic prescribed in winter [20,558/51,090 (40.2%)] compared to summer months [11,728/38,537 (30.4%)][standardized difference (SD) = 0.21]. A significantly greater proportion of winter compared to summer visits was associated with tier 2 RTDs (29.4% vs 23.4%, SD = 0.14), but less tier 3 RTDs (68.4% vs 74.4%, SD = 0.13). A greater proportion of visits in winter compared to summer months had an antibiotic prescribed for tier 2 RTDs (80.2% vs 74.2%, SD = 0.14) and tier 3 RTDs (22.9% vs 16.2%, SD = 0.17). The proportion of inappropriate antibiotic prescribing was higher in winter compared to summer months (72.4% vs 62.0%, P < .01). Conclusions: Increases in antibiotic prescribing for RTD visits from summer to winter were likely driven by shifts in diagnoses as well as increases in prescribing for certain diagnoses. At least some of this increased prescribing was inappropriate.

14.
Appl Biosaf ; 28(2): 64-71, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342514

ABSTRACT

Introduction: Lack of evidence-based information regarding potential biological risks can result in inappropriate or excessive biosafety and biosecurity risk-reduction strategies. This can cause unnecessary damage and loss to the physical facilities, physical and psychological well-being of laboratory staff, and community trust. A technical working group from the World Organization for Animal Health (WOAH, formerly OIE), World Health Organization (WHO), and Chatham House collaborated on the Biosafety Research Roadmap (BRM) project. The goal of the BRM is the sustainable implementation of evidence-based biorisk management of laboratory activities, particularly in low-resource settings, and the identification of gaps in the current biosafety and biosecurity knowledge base. Methods: A literature search was conducted for the basis of laboratory design and practices for four selected high-priority subgroups of pathogenic agents. Potential gaps in biosafety were focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Categories representing miscellaneous, respiratory, bioterrorism/zoonotic, and viral hemorrhagic fever pathogens were created within each group were selected for review. Results: Information sheets on the pathogens were developed. Critical gaps in the evidence base for safe sustainable biorisk management were identified. Conclusion: The gap analysis identified areas of applied biosafety research required to support the safety, and the sustainability, of global research programs. Improving the data available for biorisk management decisions for research with high-priority pathogens will contribute significantly to the improvement and development of appropriate and necessary biosafety, biocontainment and biosecurity strategies for each agent.

15.
Appl Biosaf ; 28(2): 87-95, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342515

ABSTRACT

Introduction: The SARS-CoV-2 virus emerged as a novel virus and is the causative agent of the COVID-19 pandemic. It spreads readily human-to-human through droplets and aerosols. The Biosafety Research Roadmap aims to support the application of laboratory biological risk management by providing an evidence base for biosafety measures. This involves assessing the current biorisk management evidence base, identifying research and capability gaps, and providing recommendations on how an evidence-based approach can support biosafety and biosecurity, including in low-resource settings. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: There are many knowledge gaps related to biosafety and biosecurity due to the SARS-CoV-2 virus's novelty, including infectious dose between variants, personal protective equipment for personnel handling samples while performing rapid diagnostic tests, and laboratory-acquired infections. Detecting vulnerabilities in the biorisk assessment for each agent is essential to contribute to the improvement and development of laboratory biosafety in local and national systems.

16.
Appl Biosaf ; 28(2): 72-86, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342513

ABSTRACT

Introduction: Brucella melitensis and Bacillus anthracis are zoonoses transmitted from animals and animal products. Scientific information is provided in this article to support biosafety precautions necessary to protect laboratory workers and individuals who are potentially exposed to these pathogens in the workplace or other settings, and gaps in information are also reported. There is a lack of information on the appropriate effective concentration for many chemical disinfectants for this agent. Controversies related to B. anthracis include infectious dose for skin and gastrointestinal infections, proper use of personal protective equipment (PPE) during the slaughter of infected animals, and handling of contaminated materials. B. melitensis is reported to have the highest number of laboratory-acquired infections (LAIs) to date in laboratory workers. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections including the route of inoculation/modes of transmission, infectious dose, LAIs, containment releases, and disinfection and decontamination strategies. Results: Scientific literature currently lacks information on the effective concentration of many chemical disinfectants for this agent and in the variety of matrices where it may be found. Controversies related to B. anthracis include infectious dose for skin and gastrointestinal infections, proper use of PPE during the slaughter of infected animals, and handling contaminated materials. Discussion: Clarified vulnerabilities based on specific scientific evidence will contribute to the prevention of unwanted and unpredictable infections, improving the biosafety processes and procedures for laboratory staff and other professionals such as veterinarians, individuals associated with the agricultural industry, and those working with susceptible wildlife species.

17.
Appl Biosaf ; 28(2): 96-101, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342516

ABSTRACT

Introduction: Shigella bacteria cause shigellosis, a gastrointestinal infection most often acquired from contaminated food or water. Methods: In this review, the general characteristics of Shigella bacteria are described, cases of laboratory-acquired infections (LAIs) are discussed, and evidence gaps in current biosafety practices are identified. Results: LAIs are undoubtedly under-reported. Owing to the low infectious dose, rigorous biosafety level 2 practices are required to prevent LAIs resulting from sample manipulation or contact with infected surfaces. Conclusions: It is recommended that, before laboratory work with Shigella, an evidence-based risk assessment be conducted. Particular emphasis should be placed on personal protective equipment, handwashing, and containment practices for procedures that generate aerosols or droplets.

18.
Article in English | MEDLINE | ID: mdl-37228506

ABSTRACT

A penicillin allergy testing service (PATS) assessed penicillin allergy in patients with hematologic malignancies; 17 patients who met criteria had negative skin testing. Patients who underwent penicillin challenge passed and were delabeled. Of delabeled patients, 87% received and tolerated ß-lactams during follow-up. Providers found the PATS valuable.

19.
Curr Biol ; 33(6): R217-R218, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36977380

ABSTRACT

Heterochrony is a foundational concept in animal development and evolution, first introduced by Ernst Haeckel in 1875 and later popularized by Stephen J. Gould1. A molecular understanding of heterochrony was first established by genetic mutant analysis in the nematode C. elegans, revealing a genetic pathway that controls the proper timing of cellular patterning events executed during distinct postembryonic juvenile and adult stages2. This genetic pathway is composed of a complex temporal cascade of multiple regulatory factors, including the first-ever discovered miRNA, lin-4, and its target gene, lin-14, which encodes a nuclear, DNA-binding protein2,3,4. While all core members of the pathway have homologs based on primary sequences in other organisms, homologs for LIN-14 have never been identified by sequence homology. We report that the AlphaFold-predicted structure of the LIN-14 DNA binding domain is homologous to the BEN domain, found in a family of DNA binding proteins previously thought to have no nematode homologs5. We confirmed this prediction through targeted mutations of predicted DNA-contacting residues, which disrupt in vitro DNA binding and in vivo function. Our findings shed new light on potential mechanisms of LIN-14 function and suggest that BEN domain-containing proteins may have a conserved role in developmental timing.


Subject(s)
Caenorhabditis elegans Proteins , Transcription Factors , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/metabolism
20.
J Biol Chem ; 299(4): 103047, 2023 04.
Article in English | MEDLINE | ID: mdl-36822327

ABSTRACT

Human cleavage and polyadenylation specificity factor (CPSF)73 (also known as CPSF3) is the endoribonuclease that catalyzes the cleavage reaction for the 3'-end processing of pre-mRNAs. The active site of CPSF73 is located at the interface between a metallo-ß-lactamase domain and a ß-CASP domain. Two metal ions are coordinated by conserved residues, five His and two Asp, in the active site, and they are critical for the nuclease reaction. The metal ions have long been thought to be zinc ions, but their exact identity has not been examined. Here we present evidence from inductively coupled plasma mass spectrometry and X-ray diffraction analyses that a mixture of metal ions, including Fe, Zn, and Mn, is present in the active site of CPSF73. The abundance of the various metal ions is different in samples prepared from different expression hosts. Zinc is present at less than 20% abundance in a sample expressed in insect cells, but the sample is active in cleaving a pre-mRNA substrate in a reconstituted canonical 3'-end processing machinery. Zinc is present at 75% abundance in a sample expressed in human cells, which has comparable endonuclease activity. We also observe a mixture of metal ions in the active site of the CPSF73 homolog INTS11, the endonuclease for Integrator. Taken together, our results provide further insights into the role of metal ions in the activity of CPSF73 and INTS11 for RNA 3'-end processing.


Subject(s)
Cleavage And Polyadenylation Specificity Factor , Endonucleases , Humans , Catalytic Domain , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/metabolism , Endonucleases/chemistry , Endonucleases/metabolism , RNA Processing, Post-Transcriptional , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...